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ON THE UNSTEADY THREE-DIMENSIONAL BOUNDARY LAYER 

FREELY INTERACTING WITH THE EXTERNAL STREAM* 

0. S. RYZHOV 

Asymptotic equations that define unsteady processes in a three-dimensional boundary 
layer with self-induced pressure are derived. The pressure gradient under condit- 
ions of free interaction is, as usually, calculated not by the solution of the ex- 
ternal problem of flow over a body, but on the assumption that it is due to growth 
of streamline displacement thickness near the body surface. Besides the principal 
terms, terms of second order of smallness are retained in asymptotic sequencies. If 
the characteristic dimensions of the free interaction region are the some in all 
directions in the plane tangent to the body surface, the system of equations defin- 
ing the thin layer next to the wall must be integrated together with the systemwhich 
defines the nonviscous stream. 

1. The external stream. We assume that under conditions of free interaction between 
an unsteady three-dimensional boundary layer and the external stream three regions with essent- 
ially different properties are formed, as happens in plane-parallel flows. As the basis of 
our mathematical analysis we take the concepts of the nonlinear theory of perturbations first 
formulated in connection with the investigation of steady separation /l-66/, and subsequently 
extended for application to processes with time dependent parameters /7--l/. According to 
that theory the effects of viscosity and thermal conductivity are small and there are no vort- 
ices in the upper region 1. The effect of dissipative factors can also be neglected in the 
middle region 2, although the velocity field is essentially turbulent. In region 3, the thin 
layer next to the wall, viscosity always plays the predominant part in the formation of flow, 
while the effect of thermal conductivity is secondary, provided the gas temperature varies 
within fairly narrow limits and, consequently its compressibility virtually does not manifest 
itself. 

We use the notation: 2 for time, z,y, z for Cartesian coordinates, vx,uy, and v, for 
velocity components along these axes, p for density, p for pressure, and L(R) for the first 
viscosity coefficient. Parameters of the unperturbed gas are denoted by the subscript 00. We 
assume for simplicity that the gas flows along a plate at velocity U, and the Mach number 

M, differs from unity by a finite magnitude. We introduce the small parameter E = h-‘/8, 

with the Reynolds number Re calculated with the use of the firstviscosity coefficient and 
distance L from the plate leading edge. We locate the axes t and z in the plane subjected 
to flow with the z-axis coinciding with thevelocityvector of the stream flowingfrominfinity. 

We begin by analyzing the external region 1 where the flow is laminar. Assuming the im- 
portance of all Cartesian coordinates to be equivalent, we set here 

t = L/C= 00 + E%), 5 = L (1 + e%& y = &SLY,, z = SLZ, (1.1) 

and expand the unknown functions in asymptotic series 

(1.2) 

where t,, 51, Yl, 21 are the arguments of functions hll hi, qt. pii, p1i (i = 1. 2, . ..) . 
We substitute formulas (1.1) and expansions (1.2) into the system of Navier-Stokes equa- 

tions and collect terms with like powers of E. For the first approximation functions we ob- 
tain 
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It is important that all equations of system (1.3) do not contain derivatives with re- 
spect to time. This maans that the external inviscid stream is inert, mcvsentarily ad>usting 
itself to the perturbations s&i& usually occur in problem on free interaction in region 3 
close t0 the wall. The second appraximation functions satisfy the nonhomogeneous system of 
linear equations 

The hom0gene0us system corresponding to ii coincides with system (1.3). Time appears 
only in the right-hand sides of 4s.CL.4) in whose sojlutions it is also contained as a para- 
meter. 

Let us partly integrate the system of Eqs.(l.3) and (1.41, aa8uming that all unknown 
functiona tend to vanish as XI-+ - mt k &, zS = con& and y,-+ + m,tt,xz,z, = conuL. The first 
of these systems yields 

For a pfane-para~li%l supersonic str@%m with &%I$ = 0 and #,> 5 the gerrck~a?. sob&ion 
of the wave equation is datembsd by *e Def&re's fomula. FrOm this follows the relati0n 

PI1 It,, 21% 05 = (M_* - l)"'/? VII (tl, r,, 0) (1.63 

between the pexturbed pressure and the transverse ctn.ap0nent of the velocity vector when yl= 0. 
For a plane-parallel subreonic stream with &XsX - 0 and M,<i we abtafn Neuman's pr&lem 
for the Laplace equatian whose solution is sought in the half-plane y,>O. In that case we 
have 

When the thermodynamic functions and the velocity field depend on all three space vari- 
ables x,9, .s,formulas (1.6) and (1.7) are no longer valid. As will becbme clear subsequently, 
the absence of simple expressions for the parameters of gas in the ex&mnal stream Blake8 it 
impossible to formulate separatery the hound value pMblem for th@ region next t0 the wall 
of the three-amfcaal b0undar-y layer. 

The result of partial integration of the system of equations for second approximation fun- 
ctions shams that 

where tu E,b(i,zl are the arguments of functions PII~Px:, of the integrands. 
If a plane-parallel stream is supersonic, both functions pls and VU are solutions of 

wave equatians with a right-hand side. For a plane parallel subsanic stream it is possible to 
formulate Neuman's probl@m for the Poisson's equation wh0se solution is to be determined in 
the upper half-plane y, >O. In both cases formul.as linking plz @I, rl,Of with q9 (81, x1,0) and 
first approximation functions on line yr =O exist: /U/. But such relations do not existfor 
the three-dimensional boundary layer. 

2. The intermediate region. us pass to the investigation af region 2 which consti- 
tutesthebasic region of the boundary layer. In spite of possibility of neglecting Viscous 
stressesandtbe heat flux, the velocity field in this region contains vortices already in the 
first appmximation, The scales of time and coordinates are specified by formulas 

Expansions 
v, = u, (U, (y*) t au??, + s%,, ;- . ..)J uy = u, (E2VZ, -+ “3w#a -t_ . ..) (2.2) 
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L’, = L’cc (EzU21 -t EsU'22 + . ..). p = ps (R, (y2) - ep,, + E& + . ..) , p = Pa + pc.u,* (+,I -i +I22 i . ..) 

are valid for the parameters of gas. The arguments of functions uZi* U2ir w*ir p?i. p*i (i = 1, 2...) 

are t,. r,, Ir. 22. 
The comparison of formulas (1.1) and (2.1) indicates, first of all, that tr= & 21 =r, 

and z1 = z2, but yr#yyz. The importance of Cartesian coordinates in region 2 is no longer 
equitable, since the chracteristic length in the direction normal to the plate has been select- 
ed equal to the thickness of the unperturbed boundary layer. Structure of the latter is ob- 
tained from the Blasius solution /12/ merging with which for tZ- - m,Ip, y?, zt = const 
enables us to establish the form of functions IJO and R,(y,). Note that transverse and 
lateral components v!, and rz of the velocity vector,respectively , are of comparable magnit- 
ude, and the perturbations of longitudinal velocity components considerably exceed them in 
the order of their amplitude. 

The substitution of formulas (2.1) together with expansions (2.2) in the systemofNavier 
-Stokes equations yields for the principal terms 

R,++ U+ aI& dR,_ 0, (2.3) 
2 TR0~il’Zl Q, - uo~+l&+o, +po 

’ 

R”a,+-+o, Uo~+u?+O 
1 

There are again no derivatives with respect to time in all equations of system (2.3). In 
the first approximation oscillations in the basic part of the boundary layer are instantane- 
ously transmitted from point to point. Only in the thin layer next to the wall can the flow 
have an essentially unstable character. 

The fourth equation of system (2.3) is separated from the remaining which are integrated 
independently of it. The integral of the fourth of Eqs.(2.3) is determined after a solution 
is obtained for functions uar, II*,, p21 and p2r. That solution defines the structure of the plane- 
parallel stream. This enables US to conclude #at it is possible to superpose perturbations 
in the sideways direction on any two-dimensional boundary in the plane tangent to the surface 
of the body, without any disturbance in the fields of other gas parameters. The three-dimen- 
sional boundary layer in region 2 differs from the two-dimensional one only by the presence 
of a velocity component in the direction of the z-axis, which is determined by the pressure 
distribution. 

For the correction terms in expansion (2.2) we obtain the nonhomogeneous system of equa- 
tions 

RO* br, + u0 ;;y; ; fjo do,:: dR0 @,I L& - I - - - 
up:*“>: ah,+, 

1 aY, dY2 at, dr.--- OY: 
H h, 

1 OaL, 
(2.4) 

The corresponding homogeneous system, although of the form of system (2.31, is linear. 
Time appears only in the right-hand sides of Eqs.(2.4), hence in their solutions it represents 
a parameter. The parametric time dependence is thus distinctive feature of expansions that 
define the perturbed stream field in the upper region 1 
2. 

, as well as in the intermediate region 

The fourth of Eqs.(2.4) can be separated from the remaining which constitute a closed 
system which differs from that corresponding to the two-dimensional boundary layer only by 
the term -R&L+~~I~z, in the right-hand side of the first of its equations. 

Passing to the integration of the last two systems of equations, we stipulate the damp- 
ing of perturbations in region 2 at infinity upstream of the flow. 
we have the explicit formulas 

For the principal terms 

(2.5) 

The arbitrary function AI(~?,+.zJ satisfies the condition A,+ 0 for I?+ - m. L. 
zs = const. The meaning of this simple solution is that the streamlineinthe boundary layer is 
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The system of Eqs.(2.4) can be partly integrated, Taking into account the explicit form 
of solution for first appxaximation functions, we obtain 

where S,, f,G are tie ezrgume~ts of function pzl of the integran& md the arbitxasy funca 
tion _&($srxq,z,) satisfias the condition that AZ-r0 when z,+ - bo,t?,zp = coast. 

3. Tha layer next to the wall.. Let us proceed now with tha analysis of region 3 
where viacoaftY has the predominant effect on the velocity field structure. In that region 
it is necaasary to sat 

P = P.T &bL -+ q-&J* + ..‘I> p = pn -k p,AL" wp,, + E$+$ -7 __.) 

where Ql .z,, gs. z, axe the arg~ents aE functions K$iV ""rti* tDgj, $&r Psr (r = f, 2, *_*.f . 
The caraparision oS fot~cfnnulas fl.11, 12.X), and 13-l.) shows that 12 = & = $* .y$ = x, = EQ 

and z1 == % -- 23, but Y, * Y, + ~3, whLch 15 natural, since the characteristic dimerrs;ions of 
all three ragiohs in dir@xti.ons lying in the plane ~ncillats the stream bra the same, a~rd the time 
count in these is carried out in the sams way. As regards the scale in the transVci?rSe direc- 
tion to the plate, these In conformity with basic concepts of the ihe interaction theory /l 
-65 are $&.ected diffrrrtn~ly. As in re@oXi 2, the iinpartance of indfvidual Cartesian coor+ 

in&es in ragiw 3 is CssWXktiaUy xione+ti%&1e. 
For the Cisrivatbn of equations &xi the 1aYer next: ;ta tie wall it is necessary to write 

also the Mpansion for t&CT: t@IUperatUs@ 

T = T,w (T31 c ET3* I" n.“), Tfi = T,, (t$? a$, y,, ta), i = i, 2, ,I. (3.3) 

The Glapeyron equation of state p = R@'pT where 8'8) is the gas constant, makes it 

possible ta eliminate from the analySSs functions T,, =d Ts by expressing them in terms 

of quantftie§ appltaring only in th% expansions of density- Th%z#? expressions can be us&d b% 

ea&ng t&e specffic heat at co,nstanl: presswe C, anef the coeffiCZ.tsnfs of first viscosity 
A*> a& t;ylsnaal ccmduct~vity k, x&i& are usually -s-d depend-t OR one tearPeSat=e- For 

shortenjng calculations it. is convenient to introduce? the ratios q BE+ P/C, and X = k/p'. 
For the iadlcated thedynamic funct.&ons the following eXp~sions: 

where t3* x3, h -% are tie arguments of EUnctions F+@j3~, qsi, x3$ {i = 2, 2, . ..) are v&S.d * 

rnw&ucing formu&~ (3.1) together with the asymptotic sequencies (3.2)- (3.4) in the 
system at Navier-Stokes equations, we obtain the usua*l Prandtl equations 
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(3.51 

*a1 s?L + ZizJl~ + 
@3 3 

pJ1 * +. waJi $$ = 
dy, 

+lSl &(x31 *) 
for the unsteady three-dimensional boundary layer in an incompressible gas which are satisf- 
ied by the principal terms. The difference is, however, in that the perturbation pressure 
cannot be taken from the solution of the external flow problem. In the considered here bound- 
ary layer both derivatives c?palf8zr and ~3p~~/Bz, are nonzero. Equations (3.5) must be supple- 
mented by the final relations between the thermodynamic coefficients &I@), qsl and X81 and 
perturbations of density psi and pressure PSI- As usual, the Prandtlnumber Pr istaken as 
the ratio of the P&let and the Reynolds numbers, i.e. Pr = +,&(g)/k,. 

For the second approximation functions we have 

(3.6) 

which is nothing else but the linearized Prandtl equations for unsteady three-dimensionalflows 
of compressible gas. The remaining terms in the input system of Navfer-Stokes equations af- 
fect only the construction of higher approximations. The homogeneity of all equations of 
system (3.6) is related to the latter feature. In that system the thermodynamic quantities 
h&), X&g), qIllr qrs,xIll, xn are to be expressed in terms of perturbations of density pal,paz and 

pressure pal, ~33~ which is achieved by the preliminary substitution of formula (3.3) for temp- 
erature into the Clapeyron equation of state. 

4. Merging of asymptotic expansions. To effect the merging of the considered 
asymptotic sequencies it is necessary to know the behavior of solution when approaching from 
inside the upper and lower boundaxies of region 2. Since R,(y,)-+ 1 and U,,(&+ f ,RS &* a'~ 
formulas (2.6) yield 

(4.11 
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These formulas are valid for any condftions at the plate. The behavior of solutian near the 
lower JxmxsaaXy af regbn 2 depends cm tPIennal conditions maintained at the surface in L?e 
strezua, Se sssuzae for simplicity that the plate is ~e~nnalfy insulated- Demtfng by jt the 
rat20 of specific heats, we find #at the relattions 

of which, again, only Ch@ first two arra independent, The last of conditions (4.4) Ls readily 

reduced to the form 
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which fofl.ows from the fifth of Eqs.U.8) considered in the plane Yx =@. The boundary con- 
ditions fox perturbations of density and the velocity vector longitudinal component cannot be 
derived in the second approximation for & = 0, using the asymptotic expressions (4.1). To 
a0 this it is necessary to know the third approximatian terms in the solution for xegion 2, 
which are not considered in the present analysis. For plane-parallel motions of gas in the 

YI = 0 plane we have formulas (1.6) of (1.7) depending on whether the Mach number at infin- 
ity exceeds unity or remains below it. Taking into account the above relations, we come to 
the immediate co~clwicm that the boundary conditions for Yz -0 for the principal terms of 
solution in region 1 can be expressed in terms of function At f&s& =. A, ffz,zzI) if aA%, = 
ai&& - 0. In that case the boundary conditions for second approximation terms will also 
contain function AS f&, Q) = A, @I, 21). ff, however, the velocity field in the boundary layer 
has a three-dimensional structure, than in the relation 

it is not possible to get rid of the normal derivative of the excess pressure by exchanging 
it for the function itself. 

Let us now carry out the merging of expansions which represent the asymptotic form of 
solutions in regions 2 and 3. Reverting to formulas (2.5) and expressions (4.2), we obtain 
limit conditions which axe to be satisfied by the parameters of gas in the thin layer next 
to the wall, If Y, +O , then the internal variable Y,-+m and the sought quantities are 

where I,, E,z, are the arguments of function ~1 in the integrand. 
The limit condition for the velocity vector comwnent along the normal to the body sur- 

face is usually omitted. In this case it can be written in the form 

and is automatically satisfied, when conditions (4.5) for pressure perturbations, density, 
and velocity vector components lying in a plane tangent to the body surface are satisfied. 
xnclsed, by substituting the asymptotics of all first approximation functions which determine 
the structure of the viscous layer next to the wall, into Eps.$3.5f, we can verify the valid- 
ity of the above statement, since this substitution results in a system of identities. 

The boundary conditions for second approximation functions are 

(4.6) 

Insertkng into the second of equalities (4.2) for l& 
al to Yn, we obtain the limit condition 

the supplementary term pxoportion- 
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for the transverse velocity vector component. As in the first approximation, it is automatic- 
ally satisfied, if the conditions for perturbations of pressure, density, and velocity vecta 
components in the plane tangent to the body surface are assumed satisfied. This can be read- 
ily proved by substituting the asymptotic expressions for the quantities pS2.p3*. uJL. L'~~,u‘~~ to- 
gether with similar expressions for functions p31, P31i ual,val, zcB, into the linear equations 
(3.61, since each of them becomes an identity. 

Thus the boundary condition for the velocity vector component normal to the plate can be 
rejected, when integrating the system of equations for the viscous layer next to the wall. 
Formally this appears to be exactly as in the classical Prandtl theory. However the reasons 
for the omission of that boundary condition are exactly opposite in the two cases, viz., when 
the self-induced pressure fs taken into account it follows from the remaining boundary condi- 
tions imposed as ~~7 00, while in the conventional theory of the boundary layer it is super- 
fluous making the respective boundary value problem insoluble. 

Note that the term I% in the expansion for density was not taken at all into considera- 
tion in the process of merging the solutions for regions 2 and 3. This is reasonable, since 
when #S-O the contribution due to it is proportional to Pi, it is sufficient to specify 
the gas density throughout the thin layer next to the wall with an accuracy to terms of order 

e. As regards terms with QY in the expansion of the velocity vector lateral component,its 
singular values proportional to ii:-" and Br-' were used in the merging with the solution in 
region 3 , and only the regular residual yielding a contribution of oraer y.i was omitted. 

5. Boundary value problems. below, we assume that the specific heat at constant pre- 
ssure is constant and the coefficients of viscosity and thermal conductivity conform to 
Chapman's linear laws 

~(~)/~~(~) = cT,'T,, Mc, = cTI'T,, c = eonst 

and set the Pxandtl number equal unity. Then the ratio T,,'T, of wall and oncoming stream 
temperatures is obtained from the Crocco relation /12/ 

TWIT, = I -- (x - i)M,V3 

AS previously indicated, in the case of a thermally insulated 
From this we concludeSthat P/P-+R*o as 

plate the derivative 

d~~~d~~ = 0. z--t - 00 not only in the first but 
also in the second approximation. similarly pip,+ R,,’ as yS+ + m in the second formulas 
of (4.5) and (4.6) obtained by merging solutions for regions 2 and 3. Rence we take as the 

solution 

pa1 (& %I* Y,. ZJ = R,", P32 P3r $31 ys, 22) = 0, p31 (t2, 22, Z2) = p21 (f29 22, Z,), Pa2 (t3. z3* 23) = P22 (4, %v 0, 22) 

In the considered here case the last of equations appearing in systems (3.5) and (3.6) be- 

come identities. men for first approximation functions in region 3 we have 

and second approximation functions are determined using the system 

(5.2) 

System (5.1) is formed of usual Prandtl equations for an unsteady three-dimensional bound- 
ary layer in an incompressible fluid. System (5.2) consists of Prandtl linearized equations 

which define unsteady three-dimensional. incompressible flows. In both systems pressure per- 

turbations &I and pa1 must be determined and are not obtained from solutions of the external 
flow, hence for a plate pal#O and p3'L f 0. 

Let us now carry out the similarity transformation 
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Let us begin by formulating the boundary value prabkm for first approximation functions. 
The first and fourth equatians of system (l.S), expressed in new variables, at which for 

simplicity double primes have been omitted, assume the canonical form 

where the upper sign at the derivative @pn'/i123 agplieo when the wv.mtxing stream is super- 
sonic, and the lower when it is subsonic at infinity. 

The boundary condition for y' = 0 are derived from the first two af equalities (4.3) 

which are independent. As previously noted, the remaining relation of (4.31 follow fJ%m re- 
spective mations of sy$lim~ (1.5) cons%dered in the #' = 0 plane. IX is, consequently, pos- 
sible to omit all supplementary equat$,ons and boundary conditions when formulating the bound- 
ary value problem for II' = 0. 

The remaining boundaxy conditions are formulated api limit conditions. Namely, as Z+ -00 
and y‘+ +m we have 

&I'- 0, vn* - 0 t5.61 

Substituting expressions (5.3 into system i5.lf and omitting the double primes at the 
newly introduced variables r we obtain wation in the canonical form 

for which we have the obviaus boundary conditions when y = 0 

%I = 0, US1 = 0, wm = 0 (5.8) 

33-e remaining boundary conditions are formulated here also as Limiting, As X-+-W 

"a1 + 99 %X-f 0% psi-L. 0 15*3) 

&3reoverC on the basis of formulas f4.5) we conclude that ss 9-m 

(5.10) 

Systems (5.4) and (fi.7) must be integrated jointly. Linking of their solutions 19 achiev- 
ed with the use of the arbitrary functions p rl(m)(t, x, 8) and A,(t.x,s) which appear in boundary 
conditions (5.5) and (5,10), and are to he determined, 

Attention had been already drawn to the fact of the impostibility af fozmulatim of bou-~d- 
ary cond%trfons for a three-dimensiona stream &n terme of function At If,=,@ o~&y~ The unevoid- 
abble consequence 52 the absence of sfmple expressions for grrf pixamekers in region 1, is the 
impossibility of separating in the general problem that of the external flow of gas Zrom the 
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which is free of any parameters. The boundary conditions of flow ug2 = 0, cg2 = 0, ~~~ = 0 when 
y=O and the limit conditions uJp- 0, ICgz -, 01 P 32 - 0 as5+-00 also do not contain any 

parameters. It is not so in the case of limit conditions as Y-00. Taking into considera- 

tion the merging requirements (4.6) we conclude that 

Paz -t PPC (t, 5, 0, 2) (5.16) 

%%+ AZ(t,z,z) + Z”r”~h”~g-~~.T~[A?-(1 - T;') All x [ I$? (C I, z) + & j f Pzv.F,Z)W] 
-es -5 

f a I&+--- 
Y az ~22 (t, LO, 2) dl 

where the coefficient A2 is defined by thesecondof formulas (5.12). The equations of syst- 
ems (5.11) and (5.15) must be simultaneous integrated. Their solutions are linked by the arbit- 
rary functions p$@(t. 5, 0, z) and A,(t.x,z) contained in the boundary conditions (5.13) and 
(5.16). The limit conditions (5.14) must be supplemented by the conditions of dampingupstream 
at infinity of gas parameters in the region next to the wall and the conditions at y=O on 
the plate. The correction terms of input expansions substantially depend on constants M,, 

c,)i and on To, even when these relate to a plane-parallel layer. 
We present the following two concluding remarks. First, in the developed theory of free 

interaction of an unsteady three-dimensional boundary layer with the external stream the 
characteristic dimensions in all directions on the surface in the stream are of comparable 
magnitude. This implies that separation zones appear in longitudinal as well as in transverse 
directions at distances of the order of 9L. When the surface under the boundary layer is 
rough,separation bubbles of the indicated scale can be generated in the boundary layer region 
next to such surface. The overall pattern of the stream is then similar to that which occurs 
at the bottom of a vessel at the beginning of boiling of water in it, although the size of 
bubbles is evidently different. When the separation is total over the region of the size of 
characteristic dimensions of the body, the shape of the separation line can substantially vary 
at distances of the order of eaL. 

The second remark relates to the shape of the surface under the stream, which, strictly, 
speaking, was assumed above to be simply a plane plate. In fact, the surface of the body can 
be of any shape, provided that the characteristic dimensions remain of the order of L. All 
reasoning remains valid, except functions Ru (YL 1'0 (v) and MO (e) are to be defined not by the 
self-similar Blasius solution , but by the data obtained by the preliminary integration of 
Prandtl equations with appropriately formulated boundary conditions. Integration of equations 
of the boundary layer defines the initial stream on sections of the order of ZL, where the 
free interaction process takes place. It is for this reason the plane tangent to the body 
surface was occasionally mentioned instead of the plate. 
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